Evidence of a π -Allyl Intermediate in the Deuterium Propylene Exchange Reaction over $C_{24}K$

Toshihiko Kondo, Masaru Ichikawa, Shuji Saito, and Kenzi Tamaru*

Sagami Chemical Research Center, Ohnuma, Sagamihara, Kanagawa

*Department of Chemistry, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo

(Received December 24, 1971)

The deuterium propylene exchange reaction was studied over the potassium graphite intercalation compound C₂₄K. The deep blue C₂₄K¹⁾ was prepared by heating 2.0 g of spectroscopic powder graphite (Union Carbide Co.) with ca. 0.5 g of distilled potassium metal in vacuo at 380°C for 24 hr. A conventional closed circulating system was used to study the exchange reaction. Mass and microwave spectroscopic techniques²⁾ were used to determine the deuterium content and its distribution in the propylene.

Deuterium (ca. 200 mmHg) was circulated over $C_{24}K$ at $120^{\circ}C$ for about 15 hr and the system was then evacuated for about 10 min. When a mixture of propylene and D_2 was introduced onto the catalyst at $120^{\circ}C$, simultaneous deuteration and exchange of the propylene took place. The amounts of the various propylenes $d_1, d_2, \cdots d_6$, were determined by mass spectrometry, using an ionization voltage of 10 V to avoid fragmentation. No propylene- d_6 was detected throughout the reaction. The hydrogen exchange reaction did not proceed through a multiple exchange process, but through successive single exchange steps.

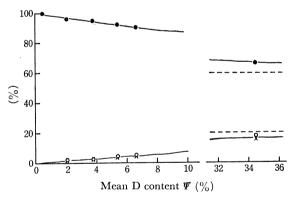


Fig. 1. Hyperfine deuterium distribution of propylene- d_1 at 120° C over C_{24} K.

Mean deuterium content Ψ is represented by the equation $\Psi = 100(\sum_{i=1}^{6} id_i/6\sum_{i=0}^{6} d_i)$. \bullet : $3-d_1$, \times : $cis-1-d_1$, \bigcirc : $trans-1-d_1$

The results of microwave spectroscopic measurements of propylene- d_1 , C_3H_5D , as shown in Fig. 1, demonstrated that propylene-3- d_1 , $CH_2DCH=CH_2$, was the only reaction product in the initial stage of the reaction. As the reaction proceeded, $cis-1-d_1$ and $trans-1-d_1^{(3)}$ propylene were formed. However, no propylene-2- d_1 , $CH_3CD=CH_2$, was observed during the reaction. This indicates that the normal propyl species $(CH_3CH_2CH_2)$ is not the intermediate of this exchange reaction. Also,

the isopropyl species (CH₃CHCH₃) cannot be the intermediate since it should give a deuterium distribution of 60% 3- d_1 , 20% trans-1- d_1 , and 20% cis-1- d_1 which should not vary with reaction time. Accordingly, the intermediate of this exchange reaction cannot be of the half-hydrogenated state of propylene.

If the exchange reaction proceeded by the concerted mechanism (push-pull mechanism),⁴⁾ propylene-3- d_1 should predominate in the initial stage of the reaction and be followed by cis-1- d_1 and trans-1- d_1 propylene. The deuterium distribution of propylene- d_1 in the concerted mechanism shows good agreement with the results in Fig. 1.

Table 1. Hyperfine deuterium distribution of propylene- d_2 in the initial stage of the reaction (Ψ =6.6%) at 120°C over C₂₄K

$1,1-d_2$	3 (%)
$cis-1,3-d_2$	22
$trans-1, 3-d_2$	25
$3,3-d_2$	50

However, the deuterium distribution of propylene- d_2 , $C_3H_4D_2$, as shown in Table 1, cannot be explained by a concerted mechanism, because this mechanism would require an initial $C_3H_4D_2$ propylene distribution of 50% cis-1,3- d_2 and 50% trans-1,3- d_2 . In contrast, the results in Table 1 show that the main product in the initial stage is propylene-3,3- d_2 , $CHD_2-CH=CH_2$, (50%) and that the cis-1,3- d_2 and trans-1,3- d_2 propylene account for only 22% and 25%, respectively, of the total propylene- d_2 . This initial distribution of propylene- d_2 indicates that in the reaction intermediate 1 and 3-carbons are equivalent.

The propylene- d_1 distribution shown in Fig. 1 can also be explained by a π -allyl intermediate (CH₂—CH—CH₂) mechanism.⁵⁾ The mechanism would predict an initial propylene- d_2 distribution of 50% 3,3- d_2 , 25% cis-1,3- d_2 , and 25% trans-1,3- d_2 . The distribution is in good agreement with that given in Table 1. Other dissociative intermediates (e.g., CH₂-CH=CH₂, CH₃-C=CH₂, CH₃-CH=CH) are also excluded by our results. It is thus concluded that the intermediate of the exchange reaction of propylene with deuterium over C₂₄K is most probably the π -allyl species, and definitely neither an associative nor dissociative species and no concerted mechanism is involved.

¹⁾ D. E. Nixon and G. S. Parry, Brit. J. Appl. Phys., 1968, Ser. 2, Vol. 1, 291.

²⁾ K. Hirota, Y. Hironaka, and E. Hirota, *Tetrahedron Lett.*, **1964**, 1645; K. Hirota, N. Yoshida, S. Teratani, S. Saito, *J. Catal.*, **15**, 425 (1969).

³⁾ Cis-1-d₁ and trans-1-d₁ represent C=C and C=C, res-H H H D

⁴⁾ D. M. Brouwer, *J. Catal.*, **1**, 22 (1962).

⁵⁾ S. Naito, Y. Sakurai, H. Shimizu, T. Onishi, and K. Tamaru, Trans. Faraday Soc., 67, 1529 (1971).